
&     <~- 

JJRS: 4197 

21 Sovetfber i960 

EQiBTICS OF SURFACE CKEMICAI. REfeCTIOHS 

I.   BB&CTXCH FROFAGATIOM FROM A HJUÖ5 SURFACE 

By 0. K« T«d«s aad R* I* Bogatskiy 

-E5SR- 

DISTRIBUTION STATEMENT A 
Approved for Public Release M _ _ . Ä - - A   > , - 

Distribution Unlimited 10000730    048 

Distributed isys 
■>» 

E o- 
2 3 OFFICE OF TECHNICAL SERVICES 
u- © C. S. DEPARTMENT OF COMMERCE 
"g S WASHXKQTON t% D. C, 
o  CO 

|5     • ; — 
• « ff. S.'JOINT FOBLICATIOliS RESEARCH SERVICE 
* m I636 C08KECTXCIJT AVE., H«W. 

W&SHIKGTOK 25» D. C 



FOREWORD • 

This publication   was   prepared under   contract 

by the UHI3ED   STATES   JOES? PUBLICATIONS   RE- 

SEARCH SERVICE, a federal   government   organi-    ■ 

zation   established   to   service the translation 

and research   needs of   the   various government 

departments* 

,.:::a 



-   ..  .. ■"■■" 

dSOs 1046-S 

KINETICS OF SURFACE CÖEMICAL MACTtOKS 

I. ENACTION PROPAGATION FROM A PLASB 
SURFACE 

■ ■  - USSfi - 

. .■ /following is'a translation of the arti-   .  . ; 
cle entitled "Kinetika topokhimicheskikh 
reaktsiy I. Raspostraneniye reaktsii 
ot ploskoy poverkhnosti" (English version 
above) by 0« M. Todes and R. I. Bogutskiy 
in Zhuroal Sksperimental'nov i Teoretiches- 

:..•■■ kov Fiziki (Journal of Experimental and 
i -  ■■■•■' Theoretical Physics), Vol 11, Ho 1, Mos- 

~. cow, 19^-1* pages 133-l^Pj7 ■'■'.! 

Contents: 1. Formulation of the problem and 
• fundamental designations»— 2. Kinetic equations of the: 
I process» — A. Free growth of separate zones. —* B*.    j 
Formation of the front. — C. Linear velocity of the prot- 
pagation of "transformation. — D. Complete form of curves 
(2) and (3). — E. Position and magnitude of the maximum^ 
'velocity for the general case. — 3. Experimental deter-: 
mination of >■?, nQ, and a. 

1. Formulation of the problem and fundamental 
designations. ""      '   '  """" 

We are going to investigate surface chemical reac-; 
tions in solids, which do not take place simultaneously 
everywhere in the system, but begin in separate points of; 
the  solid, and from there spread throughout. The creation 

I of "seeds" of "initiation centers" of e similar reaction : 
•may, as a function of conditions, take place in the inter-- 
jior, or on the surface of the solid, on the edges, ridgesj, 
or angles of the crystals. 

The similar surface chemical reactions comprise: 



J 
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i1) the transformation of one solid phase into another — ■ 
;recryst'alli$ation, and 2) the transformation of one solid; 
}body into another with the simultaneous evolution of a 
! gaseous "product, as is evidenced, for example, in the case 
I of the decomposition of carbonates. 

The theoretical analysis of the kinetics of simil- 
;ar-reactions which are started on the crystal surface has1 

!encountered considerable difficulties arising from the 
|fact, that the transformation sones which spread from the 
| various "initiation centers'^ do not grow freely, but run 
I across one another according:to the conditions of the in- 
[dividual case. In the studies of Bradley, Colvin and . 
JHume (1), Roginsky (2), Isaailow (3)* and lerof eyev (4), 
[therefore, only separate and  individual cases were invest- 
igated — the beginning or the end of the process. 
i     The example where the seeds of the new phase are 
:formed in the interior of the original phases.',' according , 
";to the requirements of the case, but thereafter grow until 
:mutual saturation was recently analyzed by Kolmogorov (5)^ 
iand also by Johnson and Mehl (6). by some different methods 
'The conclusions of -theso authors represent some modifies-1 

;tion of a new'method, which as far as we know was first 
\suggested by Clausius during his determination- of the laws 
iof the partition of "the free path.. 
;      We have accepted Clausiusi  method in the case of 
[chemical reactions or phase transformations initiated on I. 
;the surface of the solid. In this work we shall confine : 

•ourselves to the case of. the j.ilane surface, i.e., to part- 
iicles of very large dimensions. The reaction kinetics 
■for particles Of ordinary-dimensions« whose surface has 3.'-. 
!curvature different from'sero, may .be derived in a similar 
iway. ' ' 
;     -.The" results of'the latter investigation will be pub- 
lished by us separately. 

?or the analysis of the kinetics of the process, for 
•:infinitely large particles, we will assume that from every 
"center on the surface there spreads into the interior of :. 

■.the solid a spherics! front of the process with a constant 
linear velocity A cm/sec. The initiation centers of trans- 
formation may:  1) already at the very beginning.of the 
iprocess be found spread over the surface of the body at 
:ah average density n per unit area, or 2) these. centers ', 
;are created as a function of time with an initial'probabil- 
ity a per unit area per unit time interval. Naturally, 
;a more complicated case is also possible, such that the 
transformation centers appear already on the surface part- 
ially formed as a function of time. 

At the beginning of the process, the transformation 



zones are uniformly growing hemispheres.' As time goes 
on, these zones be^in to interpenetrate one another, thus 
strongly complicating the kinetics of the process and its 
calculation." Eventually, after a sufficiently long period 
of time, all the separate zones aierge and form one front 
of propagation of transformation, which travels in a 
direction cerpendicular to the surface of the solid with 
the same linear velocity X .  ■ . 

The aatheaatical analysis of the kinetics of the 
initial period — the period of free zone growth — does 
not present particular difficulties. Depending on the 
nature of these initiation centers (a = Ö, n ?  0, or 
n « 0, a / 0) we obtain the yield of the reaction product 

proportional to the third or the fourth power of time t. 
The kinetics of the final stage is simpler still, where 
after the formation of a practically plane front, the 
quantity of the reaction product is directly proportional 
to t. The analysis of the intermediate period — the 
interpenetration of zones and. their merging into one 
front — represents a fairly complicated problem in the 
theory of probability, which as yet has not been solved. 

2. Kinetic equations of theniprpcess. 

Considering the conversion of particles of suffi- 
ciently large dimensions, we say neglect the surface curv- 
ature and consider them as planes to sll intents and pur- 
poses. 

Thus, in the limiting case, one rnay consider the 
half-space bounded by the infinite plane, and filled with 
an isotronic, homogeneous substance, capable of undergoing 
a transformation. 

At the interface we have, as be fore,: transformation 
centers snread on the surface with an average surface den- 
sity n , according to the conditions of the case, and 

there asy also be forced new centers, whose probability 
of formation, taken per unit area and unit time interval, 
we adopt as a 

Let us consider an arbitrary noint K, which is at 
a distance x from the interface.  We shall define the pro- 
babilit?/ of the point K  finding itself in a transformation 
zone at time t, which zone is propagated from some  trans- 
formation centers on the ■surface, assuming that the trans- 
formation zone sore ads frp/n the center spherically with a 
constant linear velocity %  » naturally, an inequality 
t ^> x/2  is valid, as in the case of t <x/i the point M, 
in general, will not be in the reaction zone. 



  ■ - Thus, we will take t >x//2 and. investigate tbe time 
interval" ft, t + dtV Within this tise interval, ■ pnly 
those transformation sores &ay arrive et tbe point M whicn, 
firs'tlv, prooa^ate from transfcreation centers distributed 
with a" surf ace "density rv or; tbe circumference of a circle 

of radius r = 4td -  x~ with ring of width or (figure 
1); and secondly, from centers f or-uin^; on rings. whose 
radii satisfy the condition n <^ *« <AJ£*2 _ :y2" (vXP1Xr>e.  2), 
in the time interval dt, which is counted, however, not 
from'time t, but from the aoiaent /t „Wj»'

2 + x2 )*. 
Jr  ' 

The probability of point K. falling iirco the^trans- 
formation zone during the tise interval (t5 t .+■ ot; will 
he equal to the sum of the probability of falling into; 
the'transformation zone propagating froffi, centers distri- 
buted with a constant density nQ 

o' «'am rdr »■2/rrf^tä.t 

and the orobability of failing into the transformation 
zone ■orooagotin^; fron; centers during töe fciü'ie internal 
dt,  but  a little  earlier is   /"^f^     "2" 

X o.^ 
V   .A.       V -A. 

p"   =  dt»27Te   *    \   r'dr'   «TfaC^t"" - x*-)dt. 

The probability of the point V\ not .uiider^cing transforma- 
tion in the  titce  interval   (t,   t  ->■ dt)  will be 

t. •       q e  1 -  (p-   + p")   ,  1 -    /ßlfn^x  H-TTaC/l'V- - x 1/6. 

However, the noint M could have already experienced a 
transformation by time t.  A£.aun.e i'(x»t) as the r.robabil- 
ity of the- point .K not l.eir^: in xransforu-stion at 'time t, 
then the function f(x, t + dt). is the probability of 
the point'K not undergoing transformation at tinve (t + dt). 

It follows that we say write an equation 

f(x,t + dt) = f(x,t)jl ~ /2/TnJrt +7rv0td -  x227dt| . 

Expanding the left-hand side into a power series in dt, 
we obtain an eouation determining the unknown function 
f(x,t): 

.  <^I**!i- , ~/2/7n /Pt  + /Ta(i2t2 - x2) 7dt. 
f(x,t;    *-  .0 ....... 
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Solving the last-equation»'we will obtain an expression 
for f(x^t): _,       *&    p ? , o2x      —   ,1 2  3 

f(x,t) ■- exp^n^Ct* - x7/) - TTaC^t5 - 

x^t + |x5/i)„7  , 

in which the constant of integration is found from the 
obvious expression f(x, x/Z)  » 1.. We have obtained the 
probability of the point M not under-going a transforma- 
tion at cic:e t. The probability of point M. undergoing a 
transformation at tite t will be 

P(x,t)  - 1 - f(x,t) .- 1 - exp/~tfh0/?(t2 - x2/^2) .- 

■ '■ is£-(t5 - 5tx2/# +   '&?/#) J ..        (1) 

Let us distinguish an elementary layer of height dx and 
with base ares of 1 cm2, in which point M is contained. 
The volume of the substance undergoing transformation in 
this layer at time t is equal to P(x,t)'lcr/*dx, and 
the total volume experiencing transformation at time t, 
calculated for the unit surface area is:  . 

It {       1 
v(t) «' f ?(x,t)dx'« hk ■- C exp^rn^Vd - z2) - 

0 

O^lL'.— (i - 3z2 + 2z. 3)„7dZ | ,  (2) 

where ?.■ -  x/xt. 
In the preceding discussion the quantity 

P(x,t)»l cm »dx is identified with the portion of the 



'-[substance which, at time, t undergoes transformation in a 
f volume- of 1 -cia^» dx* / ■"'■ T" «^      .; 
i The transformation rate is;'■.■ 1 

j:w(t) . ^ =^jl - fexp^fn^a^ s2) T ss^ß .       ' 
I     .(1 - 5s52•+ 22527ö£°j * it|/2trn0^2t(l ~ E2)'-;V*feLJPt2- 

I '   •(! - 5«V 2E3^7eacp/C|fti0^
2t2(l- ^2) ^'^P^l  '■'. ' 

. (3..,- 3s2 + 2z227 ds. : .-,; •'" '    (J) j 
I     file-«valuation -'of these integrals 'is riot possible : 

I by. conventional means,, and it may be done approximately, : 
only. It is expedient to analyze first the initial and \ 
.the final parts of the process. 

.■■•. 'y'■■■•'■. 

.1. Free ..growth of separate zones. ■ 
In the initial part of the process, i.e., for small 

:t . 
/___»«_ >—•"-.,  

» im ^   n  V v^ 

:one may expand the function under the integral sign in '< 
•expression (2) % 'limiting it to the first three terms. 
; This approximation yields: t     \ 

'■■    ~-(±\ ~ 2 tt~>  ÄJ/T - s7 t ^ 7 J TraPt*~rr      15, t N37 

" Sit(f)2(^ '. {£) ; 
AA.       -■.■-     ■ 

The quantities  |ißi ^.V and *?&&£?%'  give the sum! 
.of the volumes of all growth zoxies (hemisphere), formed : 
between the time t » 0 and t = t, taken per unit area.  'I 

;T-he multipliers 1 - |(t/t )2 and 1  - I^Ct/t^.)5 afford a 
correction which takes into account, as a first approxi-' ; 

'■ iaation$ the interpenetration of these »ones; the quantity; 

TK<£fc(t/t. ) .(t/t„)> affords a correction which takes into • 



account« as a first approximation, the intersection of 
these zones which arise from centers of various types 

; (distributed* with a uniform density and in forming).    I 
In the case of n * 0 or a' « 0, we get 

(6) si 
In the first case the initial growth of the product is 
proportional to t*, in the second case tot*. 

B. The formation of the front» 

For large times, when t ^»-t and t^ , the evalua- ; 

.tion of the integral (2) may be effected by using the so- . 
■called "pass method", which takes advantage of the fact ;. 
'that the function under the integral sign is appreciably '" 
different from zero on3.y in a small neighborhood of the 
point a « 1. ■ Thus, .we insert in the expression under the 
integral sign, 1 ~ a2 ft 2(1 - z), 1 - Ja2 +' 2z5 5 3(1-a)2 

and we change the lower integration limit for an infinite^ 
ly remote point. After some calculations, we obtain: 

-"'■•}■ £tJ      ■'ft* ** '■■' 2      %?t 
v(t) Z it h - Cp]—$- -V-^ \    *~Z  dz/expC^^) 

0 n 

(2) 
The integral in the last expression is equal, up to the 
limit of a constant,'to the function of Kramp. As expres- 
sion (2) is interesting only for large values of the argu- 
ment, so using an asymptotic expression for the Kramp 
function, we obtain: 

( ■■ *     2t^t    2v3t   ^; 

:From the.latter it is seen that as time goes on, the ex- ';.■ 
pression in the brackets (curly) tends to unity, and 
v(t)-^/ct, ie., a flat front is established, which spreads 
with ..a uniform linear velocity /t. In the case when    J: 
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and,  in the particular case when n    = 0, or a o 
1 •   - 1 

0 

w(t) = X + —?™"^   > *(*) « -^ —T-5 •      "(2__) 
4-tfat> 2ifn -«; 

As is seen, for lara.e times, the average front in- 
creas.es with a velocity slightly larsrer than /<?. This is 
caused by the fact tbst the surface of the; real front, to 
which the transformation propagates perpendicularly, is 
sliehtly larger than the area of the final plane front. 

• "'  From formulas (10) and (12), and equally as well 
from figure 3, it is seen that the velocity w(t) should 
attain a maximum value for some value of t. 

E• Complete form of the curves (?) and (3)» 

Let us consider the complete form of the curves 
(2) and (J) for two particular cases: for n « 0 and 
a = 0.  In this investigation it is convenient to change 
over to dimensioniess variables. Thus, we shall obtain 
universal curves, from which, all experimental curves will 

■be obtained for different a, n.v. and A by the mere change 
of scale. In the capacity of a time interval* we shall 
take the intervals introduced above t^ and tn, during 
whichtime the front of the propagation of the transforma- 
tion establishes itself. The natural scale for the veloc- 
ity w is, of course, X* Here also, the natural scale- for;, 
the volume will be equal to it^, or At^  i.e., tiie voltsae 
transferring per unit area in the time t*.  aad. tjj, for the freatal 
propagation of transformation with'-the linear velocity  . 

Thus, for n = 0, we introduce the dimensicnless 
o   ______ 

variables */ .,?" ?  

uCf v 
2t~ - *y 52 ' "sl< 

where the expressions (2) and (3) in these variables are: 
'   r ,^3/, .,.N2/■■ 

1   l._ °   0 
J 

W(r)  * 1 -    Jexp^^Cl - z)^(l  + 2z)_7dz + (15) 
0     _   1 __ ^ 

3>3.j (1 - z)2(l ■+ 2s)exPi/^l-zÄl>2zVdz. 

- 9 - 



Tn.e liaiit form of expression (lj?) with dimension- 
less variables wili be; -■  . . 

r <*riV fir) ~ %fu --U t5);' Mis.- 2^(1 - M^) de) 
v"./ 

r- 
2- ^> 1:     f(r)  - td -"V »712 £""• 2) 

W(2r)  « 1  * W/48 r~ 2   . ■     (17) 

■ The result of th.e evaluation of the integral (ljj>) 
for all values is shewn in table 1;. the corresponding 
curves are given in figures 4- and 5- . 

(The velocity maximma lies at '£,, * 1.541 and equals 
w 2 1.551. a 

Fig. 5 

For a « 0, introducing a dimensicDlese transforma- 
tion 

£ « fcVrrn^ ; 
n 

a v 
#n 

(18) 

we obtain 

/0- 



1 1 

(19) 

¥(£) - I - C exp/=^2(l -z2l)J&z  + a^\(l - z2)expj?& 

y 

t) 2,-(^} 

The limit values of the formulas (19) and (20): 

'*4H; g<*) * *- ^  W<# -1"+^ * (22) 

Results of the calculations of .the-Integrals (1°/) and (20) 
are given in table 2. In this case the maximum velocity 
lies'"at f> * 1.500 and is equal to tf » 1.285. 

ID 

TABLE 1 TABLE 2 

E. Position and magnitude of the velocity maximum 
for the general case. 

We are investigating the change of the velocity as 
a function of time in two particular cases, have come to 
the conclusion that the velocity has a maximum, and have 
found its iuaximum. 

It is interest!nc» now, to find out where this max- 
imum velocity shall be found in the general case, and 
what its magnitude will he. For this, we will present 

11 



the integral (j?) and its limit values (10)  and (12) in 
the following forte-t 

W(20  =: 1 -    Cexp^2^(l - z2) -^(l - z)2(l + 2z)J?dz +i 

i.- .- ° ;..; ; ' .  \ 

\^f{l- z2) + ^(1—-2)2(1 + 2z)jexpl~l? ^(1 - z2): 

-yCl ~ z)*(1 + 2a)^7dzi (22) 

at r^i 

.   woo - 2^(1 - grb +• -fa -fäf- \&frJ <2Ö 
at ^$>1     - I 

W(y)-.-i + 34^(1 -■^+-.i|S-^B. .   .   .),  (21): 

where *y is a diraensionless parameter 
/ =>T 

7 ■" V 9 -"V""   Ä t~   »    ■ (2^ 

defining the relative density of center of the propagation 
of transformation., (distributed with a uniform density with" 
respect to formation in time). It is easily seen that the 
parameter t; connect? tbe dir-iensionless parameters intro- : 
duced above % and iv, and especially #=r# , 

She'result of the calculation t   - T(W) and 

W = '^C^) is presented in table 3">. 

From table 3 it is seen thatv if in addition to 
forming- centers of transformation with constant probabili- 
ity of incidence a, there are also transformation centers, 
distributed with a uniform density n, then the position ; 
of the maximum velocity tends towards smaller values of 
argument '£ , and its value becomes slightly less. If the 
quantity a is small in comparison with n , then the veloc- 
ity maximum is' determined by values of argument f'close 
to zero, and its magnitude is slightly different from 
the value W, *-1.285. m 

... In the converse situation, if to the transformation 
centers distributed with constant density n are added     _         •   ^ o 

. 12 . 
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centers- formed ir- tir'.;,   it is -easy'to obtain,  using 
table 5,   oti'd  the dependence $= T>?,  er-ly in  this case the 
■oararaeter  should b^   !/>/  » _ 

Ir< f5-srore 4 the 'bold i:ne re-rr-esei;ts curve (J^;, 
arid the dashed line is tb.-i: curve cbteixed from Integral 
(2),   expressed  in  cUCiSttsiorileos variables: 

(1    *   r.z)J dz  t 

for 1-4-1 

for ?'»1 
Hy  1 

c ^ id  d 

(27) 

M^17(2§) 

f(r) - rZ1 
<=: ^r,^'   " ^ 7#4        4   ->2Js 

'*•■■'/ .■<•".' 

•«-27(29) 
t T 

and  calculated for   n * I.    In-figure > the   bo3a lice is 
the curve of the  velocity  from  (15),  obtained f-oiu ^2£; 
for the values» of the £sraraeter ^ O.b  (first aasiiec   ■ 
curve)   and   n = 1,   (trie  aecosd dashed curve). 

$.     The  experiaci.^fjl  ^üt~ra^Ea?ion-/ °*' ^e 

~~     ""^a^nTtiaes  oY ^"7*13   <,   aTt&' &.* 

The entities'/£ and n can be easily determined 

15 



■experimentally,  rcr an observed velocity of propagation 
of.-transformation, after an appreciable amount of time has 
elapsed since the beginning of the process, when already 
to all intents and purposes a plane'front has been estab- 
lished, we will have 

- X   -  lisa w(t) ■• 
• t~>-C0  ■ 

The velocity in the initial period of the process enables 
us to determine n, kBowing 4,, 

n « -IT- lim ^ . 
anvP t~^o ttf . 

In .the case when n„ ~ 0, similarly we obtain a: o 

LITERATURE' 

(1) E»   S.   Bradley,  L.'Oolvin and 1,  Hume*  Proc« 
Soy«   Soc «   (A) % .147.,   5i51 ■>   (1932)«  ~~  (2)  £.   Roginsky and 
Schul a,   oSjLJli^hix^^iecu ,''1^8V;  21  (1928);   S»~  Soginsky, 
Bow,  Pbys..  1.  64C (1935)«  —  G)  £■>.  V.  Isicailow,  fcow. 

.£&££** £L,  &55<   (19?$)." ~~  (4)...fc*  V. Xsrofeyev, J6h|K (Zhur- 
nal-Fizicharkoi Kb. ire .11 - Journal  of Physical Chemistry),  . 
3.V £28  (195?). —  (?)  A.  K,  Kolsogorov,  Iayeatiya Akadem- 
ii_.Batik SSSH   -(Notices .of the Academy of Sciences USSR), 

Department of Mathematical  and Natural Sciences),  1937.  — 
V. v.'}    :.v , ~ , öO"'iX 

Bo  1089- i>39. 
'Leningrad State Univer£it;y     .Received by the Editor 
Institute of Cheaical Physics      2? October 1940. " 

Iff CO? -&.■!>-:•!-. 

14 


